Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

author

Abstract:

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the axial direction and then transformed to the non-orthogonal curvilinear coordinate system to handle arbitrary duct geometries. The transformed equations are discretized using the control-volume finite-difference approach in which the convective and diffusive terms are discretized by the upwind and central difference schemes respectively. The discretization equations are solved by a line-by-line TDMA algorithm. Numerical results of Nusselt numbers and temperature profiles are obtained for constant wall temperature boundary condition and Pr = 6.78.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Simulation of Styrene Polymerization in Arbitrary Cross-Sectional Duct Reactors by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional conservation equations of mass, momentum, energy and speciescontinuity to obtain the laminar velocity, temperature and concentration fields for simulation of polymerization of styrene in arbitrary cross-sectional duct reactors. Variable physical properties (except for speci...

full text

Nonstaggered Boundary-fitted Coordinate Method for Free Surface Flows

A new approach based on the finite-difference technique has been developed to study the steady incompressible Navier-Stokes equations in the laminar region, where the domain is partially bounded by a free surface. The nonstaggered fractional step method is used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a nu...

full text

Numerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids

This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...

full text

a new method for coordinate transformation between conformal map projections

geospatial information system (gis) has emerged as a very powerful tool for capturing, storing, analyzing, managing, and presenting data that is linked to location. the location information, which is usually obtained from existing maps or the global positioning systems (gps), refers to different coordinate and map projection systems. therefore, unification of the coordinate and mapping systems ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 3

pages  211- 226

publication date 2002-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023